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Abstract. A PC-based simulator of non-linear multiple-input multiple-output 
dynamic systems was employed for studies concerning the on-line estimation of 
both 'non-measured' state variables and multiple specific growth rates of a 
virtual baker´s yeast fed-batch fermentation. The identification algorithms were 
implemented in an 'Observer Computer' which received, optionally in 'real-time', 
in 'scaled time' or in 'simulation time', the 'measured' state variables generated 
by the process simulator in the 'Process Computer'. The state observer showed 
a robust behaviour under different situations where process parameters, 
operating variables and measuring characteristics (noise and delays) were 
changed in the process computer. The simulation package was seen to be an 
efficient and cheap tool for the simulation of non-linear processes with time 
varying parameters, providing a realistic environment for tests of identification, 
estimation and control strategies. 
 
Keywords. real-time simulator; on-line identification; software sensors;  baker´s 
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 I N T R O D U C T I O N  
 
Real processes in the chemical, biochemical 
and food industry are in their vast majority non-
linear MIMO systems. Their dynamics and 
control are difficult to study both for theoretical 
and practical reasons. In many instances 
experiments with real industrial processes are 
not carried out for reasons of economy and 
safety. Often on-line measurements are not 
available or simply they are too expensive. 
Advanced control strategies rely on adaptive 
techniques based on the knowledge of the 
system state. When experimental observation 
is lacking, 'software sensors' represent a 
major, and often the only, alternative to allow 
optimal process operation to be enforced. The 
robustness of such sensors needs however to 
be tested in flexible environments where 
difficulties such as measurement noises, time 
delays and loads to the process can be readily 
implemented on-line. Studies on state and 
parameters estimation applied to the growth of 
baker´s yeast in fed-batch regime were 
conducted in one such environment. 

 
The set-up employed is represented in Fig. 1. 
 
The general simulator with the application to 
the biological system is installed and run in 
the 'process computer'. Communications are 
performed via serial RS232 under a protocol 
which is specific of the simulator. The 
theoretical approach for state and parameter 
estimation is implemented in the 'observer 
computer'.  

 
 

T H E  M O D E L  F O R   
B A K E R ´ S  Y E A S T  G R O W T H  
 

The dynamical model for the fed-batch 
fermentor was obtained from a mass balance 
on the components, considering that the 
reactor was well mixed, the yield coefficients 
were constant and the dynamics of the gas 
phase could be neglected.  The kinetic model 
proposed by Sonnleitner and Käppeli (1986) 
was employed. The set of model  equations 
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can be written in matrix form as suggested by 
Dochain (1991) : 
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  (1) 
 
In the former - X, S, E, C, G - are, respectively, 
biomass, glucose, ethanol, oxygen and carbon 
dioxide concentrations; µo

s, µr
s and µo

e 
represent the specific growth rates for the 
three pathways proposed by Sonnleitner and 
Käppeli; D is the dilution rate and the ki (i=1 to 
9) are the yield coefficients; Sin is the 
substrate concentration in the feed; OTR is the 
oxygen transfer rate (defined as OTR = KLa 
(C* - C) where KLa is the mass transfer 
coefficient and C* is the equilibrium 
concentration of dissolved oxygen) and CTR is 
the carbon dioxide transfer rate. The dynamics 
of CO2 may be assumed as being very fast 
relatively to the dynamics of the other 
components. Also, the concentration of carbon 
dioxide at the pH of operation is known to be 
low. Hence the balance equation of CO2 can 
be simplified by assuming dG/dt = 0 and G = 
0. Defining QCO2 as the gas outflow of CO2,  
this leads to - 
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The relevant  kinetic data were taken from 
Sonnleitner and Käppeli. The yield coefficients 
proposed by Pomerleau and Perrier (1990) 
were employed. 
 
 
 T H E  D Y N A M I C  S I M U L A T O R  
 
'MIMOSA - Multiple Input Multiple Output 
Systems Analysis' - is a package which 
simulates in 'real-time', in 'scaled time' or in 
'simulation time' the behaviour of processes 
represented mathematically by sets of non-
linear differential-algebraic equations (Pimenta 
and Feyo de Azevedo, 1992a,b). 'Scaled time' 
is an optional form of operation where one 
second of real time corresponds to 'scale' 
seconds of simulation, 'scale' being an user-
defined parameter. The option 'simulation time' 

corresponds to the form of operation where no 
time control is produced. 
 
The process as simulated by MIMOSA is 
represented in Fig. 2. The relevant variables 
for the purpose of process implementation are 
grouped in six main vectors, viz - 

 c[ ] - control inputs   
 u[ ] - process loads (disturbances) 
 ud[ ] - delayed process loads 
 p[ ] - process parameters 
 y[ ] - 'system state variables' 
 f[ ] - derivatives of 'system state 

  variables' 
 

 
The 'system state vector' - y[ ] is a concept 
specific of MIMOSA. It is composed of all 
variables which have their first derivative 
explicitly represented in the set of model 
equations. This includes the formal state 
variables and all the other variables which are 
the result of adding to the formal state the 
dynamic equations for the sensors and final 
control elements. All system state variables are 
eligible for output via a D/A interface or an 
RS232 port, depending on the version of the 
package being employed. The output is thus 
constituted by the measured state variables -
ym- and the measured loads -um. Both are 
subsets of y. 
 
The general solution of MIMOSA (coded in MS 
C Vs. 5.1) is based on the integration in the 
time-domain of the set of differential-algebraic 
equations which constitute the process model. 
This is achieved in the current version by 
employing a variable-step algorithm based on 
Fehlberg's embedded 4th/5th order, Runge- 
Kutta type formulae (Chapra and Canale, 
1989).  
 
A basic cycle of work consists on the following 
tasks - (i) Reads control action; (ii) Proceeds 
with integration; (iii) Displays and files results; 
(iv) Outputs measurements; (v) Checks 
keyboard for interaction while controlling time. 
Currently, with a 80486 based machine, a well-
conditioned set of 20 differential equations can 
be processed in 0.25 seconds, i. e. an 
observer can 'see' the process every 0.25 
seconds. 
 
The basic concept to create an operator 
interface was that of 'all-in-one' Graphics 
Interface where all interactive information is 
displayed in one single page (screen). This is 
a major feature for simplicity of operation. 
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Figure 3 shows the 'all-in-one' approach. In the 
upper half of the screen a graphics facility 
emulating a 4-pen register is available. In the 
lower half all main variables are monitored and 
made available for on-line change. In particular 
it should be noted that : 
 

i. All system state variables y[ ] can be 
monitored and all are eligible as output 
variables with a superimposed 'user-
defined' random noise; 

 
ii. All parameters named as p[ ] in the 

model equations can be monitored and 
their values changed on-line. This 
includes the noises and dead-times 
defined in a data file, which MIMOSA 
automatically will add to the list of 
parameters and as such will make 
available for on-line change. 

 
The User creates his own case by writing an 
ASCII file with the right-hand-side of the 
system model differential equations, together 
with the relevant algebraic equations. A data 
file with information on inputs, system 
parameters and output characteristics is the 
other file to be supplied. In constructing both 
files a few simple rules have to be observed 
(Pimenta and Feyo de Azevedo, 1992a,b).  
 
With one single command MIMOSA creates a 
formal case-study (an executable file) which 
can be run with the data file supplied. During 
operation, loads to the process can be 
generated through the keyboard of the process 
computer. Also, the declared time-varying 
parameters (including delays and 
measurement noises) can be changed on-line 
and in real time. Finally, the appropriate control 
actions (if it is the case) generated by an 
external controller (computer or standard 
industrial system) can be sent to the process. 
 
 
 T H E  O B S E R V E R  A L G O R I T H M  
 
The approach proposed by Bastin and 
Dochain (1990) was implemented in the 
'Observer Computer'. Equation (1) can be 
written in the form of the so-called 'general 
dynamical model for stirred tank bioreactors' - 
 
 

 

d
dt

K X D Ux m x= - +
 

(3) 

 
in which: ξ is the vector of the bioprocess 
components (dim(ξ) = N); µ is the specific 
reaction rate vector (dim(µ)=M); K is the yield 

coefficients matrix (dim(K) = NxM); U is the 
feed and the gaseous outflow rates vector 
(dim(U) = N). 
 
This state space representation can be divided 
in two partitions: the first one includes the 
equations relative to the measured state 
variables (ξ1); the second partition, the 
equations relative to the nonmeasured state 
variables (ξ2). The dynamical model is 
rewritten as : 
 
d
dt

K X D Ux m x1
1 1 1= - +

 
(4)

 
 
d
dt

K X D Ux m x2
2 2 2= - +

 
(5)

 
 
 
where K1 (a full rank matrix), K2, U1, U2 = 
division of K and U according to each partition. 
A transformation is applied to the 
nonmeasured state variables partition and with 
the corresponding Z dynamics: 
 
 
Z K K= - -x x2 2 1

1
1  (6) 

 
dZ
dt

DZ U K K U= - + - -
2 2 1

1
1 (7) 

 
 
A "Luenberger-type" asymptotic observer can 
be written using eq. (7) with Z replaced by its 
estimate !Z  and the non-measured state 
variables estimated by the following equation: 
 
! !x x2 2 1

1
1= + -Z K K   (8) 

 
 
For the specific growth rates the following 
estimator is employed: 
 
d
dt

X D K U X
! ! ( ! )y m y w y y= - + + --

1
1

1  (9) 

d
dt

X
!

( ! )m g y y= -   (10) 

 
with  y x= -K1

1
1, a transformation to decouple 

the equations with respect to the specific 
growth rate; ω, γ are diagonal matrices 
containing time varying tuning parameters 
updated by a pole placement procedure 
(Pomerleau and Perrier, 1990). A discrete 
version of the estimator algorithms was 
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implemented by first order Euler approximation 
with a sampling period of 6 minutes. 
 
 

R E S U L T S  A N D  C O N C L U S I O N S  
 
Two case studies illustrate the application. In 
both, the initial conditions were -  
 
 X(0) = 0.1 g/l,  S(0) = 0.8 g/l, E(0) = 0 g/l, 
 C(0) = 0.0066 g/l, V(0) = 3.5 l, Sin(0) = 5 g/l.  
 
 The value for KLa was assumed as 60 hr-1. 
 
In the first a constant dilution rate of 0.04 hr-1 
is assumed. The final volume of 10 l is taken 
as criterion to stop the feeding. Figure 3 
represents the process simulation with 
MIMOSA. 
 
Glucose, dissolved oxygen and ethanol were 
the measured variables available to the 
'observer'. After about 3 hours a white noise of 
approximately 5% was imposed on the 
measurement of oxygen. The dotted lines in 
Fig. 4 represent the biomass and the flux of 
CO2 estimated. The continuous lines 
represent the 'true' values obtained with the 
simulator. The reconstruction of the relevant 
specific growth rates is shown in Fig. 5. The 
influence of noise is visible in the figures, but it 
is well dumped by the filter. 
 
In the second case study an exponential 
evolution of the dilution rate [D(t)=0.03 
exp(0.1t)] was imposed in MIMOSA. A white 
noise with variance 0.01 was considered in the 
measurement of ethanol. Figure 6 shows the 
observed (dotted lines) and the 'true' values of 
biomass, glucose and CO2 outflow obtained 
from single measurements of dissolved O2 
and ethanol. Here, a simplification had to be 
performed, having neglected the oxidative 
specific growth rate on ethanol, µe. The 
'Observer' is not sensitive to the noise 
imposed and performs well. 
 
Further analysis is beyond the scope of this 
paper. The 'process' simulator provides, as 
described, a realistic environment for on-line 
test of identification strategies. Its User 
interaction capabilities, such as imposing dead 
times and noises, imposing on-line variation of 

parameters and switching between real-time, 
scaled time and simulation time, are well 
above those allowed by other packages 
available. The setup proposed constitutes 
thus, a PC based laboratory for research and 
development in process control. 
 
 
 A C K N O W L E D G E M E N T S  
 
This work was partially supported by JNICT - 
Junta Nacional de Investigação Científica e 
Tecnológica, under contract numbers  
BD/224/90-IF and BD/1476/91-RM and INIC - 
Instituto Nacional de Investigação Científica. 
 
 
 L I T E R A T U R E  C I T E D  
 
Bastin, G. and Dochain, D. (1990). On-Line 

Estimation and Adaptive Control of 
Bioreactors. Elsevier Science Publishers, 
Amsterdam. 

Chapra, S. C. and Canale, R. (1988). 
Numerical Methods for Engineers. 2nd 
Ed., McGraw-Hill International Editions, 
Applied Mathematics Series, New York. 

Dochain, D. (1991). Design of Adaptive 
Controlers for Non-linear Stirred Tank 
Bioreactors: Extension to the MIMO 
Situation. J. Proc. Cont., 1:1, 41-48.  

Pimenta, P. and Feyo de Azevedo, S. (1992). 
Real Time Dynamic Simulation of Non-
linear MIMO Systems. European Symp. 
on Comp. App. in Proc. Eng. (accepted) 

Pimenta, P. and Feyo de Azevedo, S. (1992). 
MIMOSA User´s Manual and Applications 
Reference Book. V. 1.0, Internal 
Publication (in English), Departamento de 
Engenharia Química, Faculdade de 
Engenharia, Universidade do Porto.  

Pomerleau, Y. and Perrier, M. (1990). 
Estimation of Multiple Specific Growth 
Rates in Bioprocesses. A.I.Ch.E. J., 36:2, 
207-215.  

Sonnleitner, B. and Käppeli, O. (1986). Growth 
of Saccharomyces Cerevisiae is 
Controlled by its Limited Respiratory 
Capacity: Formulation and Verification of 
a Hypothesis.  Biotechnol. Bioeng., 28, 
927-937.  

 

 



 

457 

 
 
 

Fig. 1. Laboratory set-up. 
 
 
 
 
 

 
 

Fig. 2. Representation of a MIMO process. 
 
 
 
 
 
 

 
 
 

Fig. 3.  Process monitoring in MIMOSA. 
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Fig. 4.  'Observed' - (dotted lines) vs. 'true' state properties (continuous line). 
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Fig. 5.  'Observed' (dotted lines) vs. 'true' specific growth rates (continuous line). 
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Fig. 6.  Estimation of biomass, glucose and outflow of CO2 from measurements of ethanol and 
dissolved oxygen. 

 


